
Vo l . 1 	 E E E 	 2 0 1 6

t h e

J o u r n a l o n I n n o v a t i o n

C r i t e r i o n

619

Open Source, Modular Platforms,
and the Challenge of Fragmentation

Christopher S. Yoo*

Open source and modular platforms represent two powerful conceptual para-
digms that have fundamentally transformed the software industry. Although
generally considered complementary, the freedom inherent in open source
rests in uneasy tension with the strict structural requirements of modular-
ity theory. In particular, third-party providers can produce noncompliant
components, and excessive experimentation can fragment the platform
in ways that reduce its economic benefits for end users and app providers
and force app providers to spend resources customizing their code for each
variant. The classic solutions to these problems are to rely on some form
of testing to ensure that the components provided by third parties comply
with a compatibility standard and to subject the overall system to some
form of governance. The history of the three leading open source operat-
ing systems (Unix, Symbian, and Linux) confirms this insight. The question
is thus not whether some constraints will apply, but rather how restrictive
those constraints will be. Finally, the governance regimes range from very
restrictive to relatively open and permissive. Competition policy authorities
should take into account where certain practices fall along that spectrum
when enforcing competition law. Exposing the more permissive practices
to demanding scrutiny runs the risk of causing operating systems to turn to
more restrictive approaches.

	 *	 John H. Chestnut Professor of Law, Communication, and Computer & Information Science,
University of Pennsylvania; Founding Director, Center for Technology, Innovation & Competition,
University of Pennsylvania Law School. This article benefitted from comments at seminars at the Center
for Global Communications of the International University of Japan, ICT Law & Economy Institute
and Social Science Korea (SSK) Research, Group at Sogang University, the Roundtable on “Platforms
and Mobile Competition” co-sponsored by the London School of Economics and Political Science and
the University of Leeds, and the University of Pennsylvania Law School. The author also thanks the
Milton and Miriam Handler Foundation and Google for their financial support. All views and any errors
contained in this article are the responsibility of the author. Copyright 2017 by Christopher S. Yoo. All
rights reserved.

620	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

The past few decades have borne witness to the emergence of two
conceptual paradigms that have fundamentally transformed the software
industry. The first is the open source movement. Open source is based on
the principle that every user should be able to modify software freely. In so
doing, open source seeks to mobilize the entire community of end users to
volunteer their time to debug the code. The freedom to build freely on exist-
ing software also enhances competition by enabling anyone being charged
excessive prices to develop an alternative. The flexibility provided by open
source also promises to promote innovation by empowering all users to add
new functionality to the system.

The second paradigm is the concept of platforms. Platforms are stan-
dardized architectures that divide complex systems into modules and define
the interfaces that link these modules. Modular platforms represent a break
from the traditional approach to managing complexity in which a single
actor manages the software development process. In a modular platform,
any interested third party can create a component for the overall system so
long as the resulting component complies with the standardized interface.
In so doing, platforms allow multiple actors to pursue parallel innovation,
which can improve the quality of the technical solution as well as increase
the rate of technological change. The standardization inherent in modular
platforms also allows device manufacturers and app providers to unlock the
economic potential of their innovation by allowing them to reach large user
bases without needing to constantly create new versions for each new hard-
ware device.

These two concepts can be powerfully complementary in certain settings.
Indeed, commentators have long recognized that the distributed develop-
ment model underlying the open source movement necessarily depends on
modularity to divide the system into parts small enough to be improved by
individual work groups and programmers and to enable multiple actors to
work to improve different parts of the system simultaneously.1 The compati-
bility and affinity between these two concepts is eloquently demonstrated by
the fact that two of the most important operating systems, Unix and Linux,
are platforms for third-party apps and open source simultaneously.

What is less well recognized is the extent to which these two concepts
rest in uneasy tension with one another. Although the freedom of open source
suggests unlimited flexibility to change parts of the system, to function
properly modular platforms require that all components adhere strictly to a
predetermined set of standards that govern how the different components
interconnect and interact. This tension is well illustrated by the problem of

	 1	 See, e.g., Joseph Feller & Brian Fitzgerald, Understanding Open Source Software
Development 76–79, 170–71 (Addison-Wesley 2002); Steven Weber, The Success of Open Source
172–74 (Harvard Univ. Press 2004).

2016] 	 Software Frag mentat ion 	 621

fragmentation, which has long been recognized as a major problem for many
open source projects. The most extreme form of fragmentation, known as
forking, occurs when a contributor to an open source project customizes
a non-application layer of a platform to an extent that it is no longer fully
interoperable with the rest of the project. The result is to divide the system
into two distinct and incompatible versions.

Such fragmentation represents a conundrum for open source. On the
one hand, users’ freedom to customize software is integral to the open source
movement. Indeed, absent constraints, the freedom inherent in open source
effectively gives users the ability to fragment the system.2 On the other hand,
infinite flexibility creates costs for the open source community by requiring
the diffusion of effort and the duplication of work across multiple projects.
Fragmentation also harms device manufacturers and app developers by limit-
ing interoperability and by requiring them to adapt their products for what
are now separate platforms (a process called porting). End users are often
disappointed to find that particular software works only on some platforms.

The success of an open source platform thus depends on reconciling the
freedom inherent in open source with the compatibility required by modular
platforms. Some constraints on the flexibility of open source are thus inev-
itable. The real policy question is what types of constraints are appropriate.

This article analyzes the complex relationship between open source
and modular platforms by describing the basic principles underlying each
approach and examining the extent to which they are simultaneously funda-
mentally interconnected and in inherent tension. It then explores the history
of three leading examples of open source operating systems—Unix, Symbian,
and Linux—to illustrate how these dynamics work in practice. It concludes
by examining what lessons these histories have for the current debate over
the propriety of restrictions to open source mobile operating systems, paying
particular attention to Google’s Android Anti-Fragmentation Agreement. It
also lays out key features that make such restrictions less problematic from
the standpoint of competition policy.

The core lesson is that some restrictions on what people can do with
open source operating systems are necessary if consumers are to enjoy
the full benefits of competition and innovation. The key question is the
reasonableness of the restrictions that are being imposed. My point is not
to suggest that open source software is inherently superior to proprietary
software or vice versa. Both approaches have distinct virtues that appeal to
different users. Moreover, any attempt to cast the policy debate as a choice
between those polar extremes is based on a false dichotomy. Instead, the
different modes for producing software platforms are better regarded as

	 2	 See, e.g., Weber, supra note 1, at 64, 89, 170; Jonathan Corbet, Android, Forking, and Control, LWN
(June 6, 2011), https://lwn.net/Articles/446297/.

622	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

occupying different locations along a continuum that runs from completely
unrestricted open source to completely proprietary closed source. Indeed,
companies may even choose to pursue hybrid strategies that occupy multi-
ple locations on this continuum simultaneously. The diversity of advantages
associated with these different approaches suggests that consumers benefit
if different companies are given the latitude to experiment with different
governance models, with the presence of one open source platform serving
as an important competitive safety valve. Moreover, the analytical frame-
work suggests that a completely open source platform represents an ideal
type that is inherently unrealistic. The fact that open source platforms are
subject to some constraints is thus not inherently problematic. The proper
role for competition policy is to provide a framework for determining when
such constraints are reasonable.

I. The Conceptual Underpinnings of
Open Source and Modular Platforms

Understanding the simultaneous connection and tension between open
source and modular platforms requires an appreciation of the principles
underlying each concept.

A.	 Open Source

Open source software is often put forth as a new paradigm in software
production. Computer programs can be distributed in two forms.3 The first
is known as source code, which is written in a programming language such as
Pascal or Fortran, to use two dated examples that have been replaced by
newer languages such as C++, Python, and Perl. Although source code is quite
technical, experienced programmers can read and modify it. Source code is
then compiled into object code or machine language, which consists of a series
of 0s and 1s. Object code can be read by computers, but cannot be easily read
by human beings.

One of the main triggers for the open source movement was software
companies’ practice of attempting to protect their software by distributing it
only as object code and refusing to release the source code. These companies
also copyrighted their code and included clauses in end-user licenses prohib-
iting customers from modifying it. The absence of the source code and the
contractual restrictions on modifying the code made it difficult for end users
who wished to customize the code to diagnose and resolve incompatibility
problems.

	 3	 The foregoing discussion draws on Fabrizio Marrella & Christopher S. Yoo, Is Open Source Software
the New Lex Mercatoria?, 47 Va. J. Int’l L. 807, 809–11 (2007).

2016] 	 Software Frag mentat ion 	 623

Frustration over the inability to customize code led to the open source
movement. Although numerous definitions of what constitutes open source
exist, they generally agree that all software should be distributed with its
source code or that the source code should be made available on request.
Open source definitions also generally share the requirement that end
users be permitted to modify the code and distribute their modifications.
Beyond these basic commitments, open source exhibits considerable varia-
tion. For example, the GNU Public License (GPL) contains a viral provision
that requires that any code that is combined with GPL-licensed code to be
governed by the GPL. Because the GPL enforces openness through copy-
right licenses, the viral provisions are sometimes called copyleft requirements.
Other open source licenses, such as those used by Berkeley and Apache, take
a more academic approach, simply requiring that any modification provide
clear notice of the changes and give appropriate credit to the creators of the
original code. Other variants exist as well, with the Open Source Initiative
currently listing seventy-eight approved licenses.

The existence of multiple licenses reflects a divergence of philosophies
within the open source movement.4 Some early movement pioneers, such
as Richard Stallman, emphasize the freedom to tinker and rely on the viral
copyleft provisions to prevent proprietary and open source software from
being combined. Others, such as Bruce Perens and Eric Raymond, adopt a
less hostile, more pragmatic approach that permits open source and propri-
etary software to be combined.

Beyond these formal attributes, open source projects depend on a vibrant
community of developers willing to volunteer their time to improve and
extend the project. The belief is that opening up the opportunity to improve
the code to the entire user base will increase the total number of person-
hours devoted to the project and will enable problems to be identified and
fixed more rapidly. This spirit has been captured by Eric Raymond in a claim
dubbed Linus’s Law: “Given enough eyeballs, all bugs are shallow.”5

B.	 Modular Platforms

One of the biggest problems confronting any major software project is how
to coordinate the various teams working on different parts of the system.
One of the most famous examples arose when IBM was developing the

	 4	 See, e.g., Chris DiBona, Sam Ockman & Mark Stone, Introduction, in Open Sources: Voices from the
Open Source Revolution 8–9 (Chris DiBona, Sam Ockman & Mark Stone eds., O’Reilly 1999), https://
smaldone.com.ar/documentos/libros/opensources.pdf [hereinafter Open Sources]; David McGowan,
Legal Implications of Open-Source Software, 2001 U. Ill. L. Rev. 241, 260–65; Bruce Perens, The Open Source
Definition, in Open Sources, supra, at 79–80; Richard Stallman, The GNU Operating System and the Free
Software Movement, in Open Sources, supra, at 31, 37.
	 5	 Eric S. Raymond, The Cathedral & the Bazaar: Musings on Linus and Open Source by an
Accidental Revolutionary 27 (O’Reilly 1999).

624	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

System/360 computer. To make sure that the entire team understood the full
intricacies of the design, the project managers required that every program-
mer maintain a workbook documenting all of the other parts of the system.
In just six months, the workbook was five feet long and required filing of
150 pages of updates each day. Worse yet, even when the project was running
behind, managers found that adding more personnel actually slowed the
project down. This insight has led to the coining of what is known as Brooks’s
Law, which holds that “adding manpower to a late software product makes it
later.”6

In addition, one of the hallmarks of a complex system is the way that
components can interact with one another in unexpected ways.7 Validating
a complex system requires testing every possible combination of states of
the world that each of the various components of the system could possi-
bly occupy. If the number of interdependencies is large, the number of
unique combinations of parameters that must be tested can rapidly become
immense, particularly if each component is permitted to occupy a large
number of states.8 The problem becomes even more difficult if the interde-
pendencies form a circuit that recursively loops back onto itself (for example,
if task A depends on task B, which in turn depends on task C, which depends
on task A). When that is the case, testing requires exploring not only every
possible combination of states of the world, but also cycling through itera-
tions until each combination reaches stability.

The traditional approach to managing the inherent complexity of large
software projects is for a single actor to coordinate and control all of the
design teams working on a project, and to use managerial processes to ensure
that the communication and testing needed for proper integration of the
design occurs. The tightness of the control means that most firms either
produce components themselves or maintain strict control over any third
parties on which they rely to produce components of the overall system.

A new approach has emerged that replaces the strong integrated design
with a modular architecture. Modular architectures minimize system complex-
ities by defining the modules so that highly interdependent tasks are clus-
tered within the same module.9 Cross-module interdependencies are limited
by requiring that modules interact with one another solely through

	 6	 Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering 31
(Addison-Wesley 1975).
	 7	 The analysis of modularity draws on Christopher S. Yoo, Modularity Theory and Internet Policy, 2016
U. Ill. L. Rev. 1.
	 8	 Edsger W. Dijkstra, The Structure of the “THE”-Multiprogramming System, Comm. ACM, May 1968, at
341, 344 (1968).
	 9	 For the classic statement, see Herbert A. Simon, The Architecture of Complexity, 106 Proc. Am. Phil.
Soc’y 467 (1962).

2016] 	 Software Frag mentat ion 	 625

predetermined interfaces that strictly cabin the amount of information that
can pass between modules, the details of which are often defined in open
standards.10

The existence of these standardized interfaces minimizes the need for
firms producing components to coordinate with one another. So long as a
component manufacturer conforms to the standard, any third party can
produce compatible components. All of the information needed to coor-
dinate with other modules is embodied in the standards. This allows third
parties to work on different components of the same system without needing
to worry that any changes made to any one component might create ripple
effects throughout the entire system. Moreover, it allows multiple teams
working in parallel to experiment with different technical ways to implement
a particular module, allowing greater latitude to experiment with different
solutions and faster innovation.

II. The Complex Relationship Between
Open Source and Modular Platforms

Open source and modularity are both recognized as important underpinnings
of the modern Internet economy. Indeed, modularity is often identified as a
critical success factor for any open source project. As Linux founder Linus
Torvalds succinctly noted, the open-source development model depends on
“hav[ing] a system which is as modular as possible,” because without modu-
larity, “you can’t easily have people working in parallel,” and “I would have to
check every file that changed.”11

A closer examination reveals that the relationship between open source
and modular platforms is more complex than this simple statement would
lead one to believe. Although open source cannot exist without modularity,
the infinite flexibility inherent in open source exists in uneasy tension with
the strict structural requirements upon which modular platforms depend.12

	 10	 D.L. Parnas, On the Criteria To Be Used in Decomposing Systems into Modules, Comm. ACM, Dec. 1972, at
1053.
	 11	 Linus Torvalds, The Linux Edge, in Open Sources, supra note 4, at 101, 108. For academic studies of
the link between modularity and open source, see, for example, Feller & Fitzgerald, supra note 1, at
76–79; Weber, supra note 1, at 172–74; Carliss Y. Baldwin & Kim B. Clark, The Architecture of Participa-
tion: Does Code Architecture Mitigate Free Riding in the Open Source Development Model, 52 Mgmt. Sci. 1116
(2006); Andrea Bonaccorsi & Cristina Rossi, Why Open Source Software Can Succeed, 32 Res. Pol’y 1243,
1247 (2003);Vishal Midha & Prashant Palvia, Factors Affecting the Success of Open Source Software, 85 J. Sys. &
Software 895, 903 (2012).
	 12	 The discussion that follows draws heavily on the superb analysis in Weber, supra note 1. For other
important accounts, see Feller & Fitzgerald, supra note 1; DiBona, Ockman & Stone, supra note 4.

626	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

A.	 The Synergies Between Open Source and Modularity

Open source and modularity are widely regarded as complementary concepts.
Indeed, modularity is essential for an open source project to succeed. As
Torvalds’s statement quoted above indicates, decomposing a larger system
into subsystems connected by minimal interdependencies isolates each
component in ways that make it easier for multiple groups to work on improv-
ing different components simultaneously. This allows designers to experi-
ment with improvements to particular parts of the code without needing to
continually worry about creating problems for other parts of the system.

Indeed, the rigid logical structure through which modules are intercon-
nected is what allows multiple third parties to work on the same project.
Conway’s Law, which has long been recognized as a central tenet of soft-
ware production, holds that the architectural structure of technical systems
mirrors the organizational structure that produces them.13 This means that
without the distributed nature inherent in a modular architecture, the
distributed organizational production system that characterizes open source
could not exist.

B.	 The Tensions Between Open Source and Modularity

Open source advocates have acknowledged that the freedom to innovate
that lies at the heart of open source software represents something of a
two-edged sword. Open source inherently gives end users complete latitude
to customize software as they see fit. Although such unfettered freedom is
unproblematic when the code is run in isolation, it becomes more problem-
atic when the code is supposed to interoperate with the other components
of an interoperable platform. As noted earlier, modular platforms depend on
standardized interfaces that predefine how different modules will interact
with one another. Although one can experiment with different configura-
tions of tasks within a module, interactions between modules must strictly
adhere with the interfaces. Any code that does not conform to the modular
design becomes noninteroperable with the rest of the system.

The tension between flexibility and structure can lead to two character-
istic problems with open source platforms. The first is the temptation for
people modifying individual components to introduce interdependencies
that deviate from the modular architecture. The second is the possibility that
a subgroup of an open source project may fragment the project, in extreme
cases dividing into two distinct and incompatible branches in a phenomenon
called forking.

	 13	 Melvin E. Conway, How Do Committees Invent?, Datamation, Apr. 1968, at 28, 31.

2016] 	 Software Frag mentat ion 	 627

1.	 The Temptation to Create Noncompliant Modules and the Need for Testing

As noted earlier, the key design feature of a modular architecture is the clus-
tering of highly interdependent tasks within the same module and ensuring
that the interdependencies that are supposed to be encapsulated within
that module do not affect other modules. The key to ensuring that these
interdependencies remain isolated within a module is to design the module
interfaces so that they contain only information associated with interdepen-
dencies that are permitted by the design, and to require that other modules
restrict themselves to interacting only with the information made visible by
the interface. All information about other independencies remains hidden
within the module.

The tradeoff inherent in this approach means that “designers will lose the
ability to explore some parts of the space of designs—in effect, the architects
will restrict the search, declaring some parts of the design space to be out of
bounds.”14 More specifically, the generality inherent in modularity inevitably
leads to a degree of inefficiency.15 There will inevitably be occasions where
one module finds that the most efficient way to solve the problem at hand
would be to refer to information contained in an adjacent module, despite
the fact that that information is excluded from the module interface and is
thus associated with an interdependency that is supposed to remain encapsu-
lated within the module. Moreover, generality requires incurring the cost to
support features that particular implementations may never need.

The inefficiency and inflexibility inherent in this result led early schol-
ars to denounce the use of modular interfaces as “radical.”16 Over time, these
critics began to concede that using information hiding to implement modu-
larity created real benefits.17 This concession does not eliminate the reality
that inefficiency remains an irreducible part of any modular platform, and
that open source module developers have both the ability and the incentive
to access information associated with interdependencies that they are not
supposed to take into account. This dynamic explains why the number of
interdependencies among Linux modules has increased exponentially with
each release.18

	 14	 1 Carliss Y. Baldwin & Kim B. Clark, Design Rules: The Power of Modularity 68–69 (MIT
Press 4th ed. 2000).
	 15	 William C. McGee, Generalization: Key to Successful Electronic Data Processing, 6 J. ACM 1, 2 (1959);
David D. Clark, Modularity and Efficiency in Protocol Implementation 16 (Network Working Group Request
for Comments 817, 1982), http://tools.ietf.org/pdf/rfc817.
	 16	 Brooks 1975, supra note 6, at 78.
	 17	 Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering 31
(AddisonWesley 20th anniversary ed. 1995).
	 18	 Feller & Fitzgerald, supra note 1, at 176.

628	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

A recent dispute between Skyhook Wireless and Google provides an apt
illustration of these dynamics.19 Both Skyhook and Google provide location
services, which are apps that identify the latitude and longitude coordinates
for the location of the device. Location services determine geolocation data
from one of three sources: (1) global positioning satellites (GPS), (2) WiFi
access points whose locations have been stored in a manually compiled data-
base, and (3) triangulation on cell tower locations. Of these three, GPS is
considered the most accurate, but is typically slower than the other meth-
ods.20 All location services incorporate the data that they collect into the
existing databases. Because GPS data is considered more accurate, the
Android GPS application programming interface (API) separately reports
data collected from GPS, WiFi, and cell towers to give developers that rely
on this data a clear understanding of its quality.21

Both Google and Skyhook use all three methods to determine the location
of a mobile device. Motorola was considering including Skyhook’s location
service, known as XPS, into one of its devices. Google carefully differentiates
between location data based on GPS and location data derived from network
information, such as the location of WiFi access points and cell towers.22
XPS, however, reported both GPS-based and network-based data togeth-
er.23 When Google found out about these plans, it informed Motorola that
XPS’s location services did not comply with the Android compatibility stan-
dard, although it did make clear that Motorola was free to include Skyhook if
XPS was modified to stop returning network-based data into the GPS data-
base.24 Eventually, Motorola removed XPS from its devices.25 Skyhook sued
Google for intentional interference with contacts and business relationships.
The Massachusetts Superior Court granted summary judgment in favor of
Google on all counts.26

Modularity theory provides a clear basis for understanding why the
court’s decision was correct. To function properly, every module must be able
to trust that all of the information being sent by other modules comprising
the system complies with the design architecture. To ensure that is the case,
some means must exist for identifying and excluding noncompliant modules.
Compliance and testing mechanisms ensure that each module can rely on the
fact that all of the other modules are operating in the manner specified by
the design.

	 19	 Skyhook Wireless, Inc. v. Google, Inc., 30 Mass. L. Rptr. 417 (Super. Ct. 2012), aff ’d, 19 N.E.2d 440
(Mass. App. Ct. 2014).
	 20	 Id. at 418.
	 21	 Id. at 418–19, 421.
	 22	 Id. at 418.
	 23	 Id. at 419.
	 24	 Id. at 425.
	 25	 Id. at 420–24.
	 26	 Id. at 418, 424, 427.

2016] 	 Software Frag mentat ion 	 629

When a mobile platform is proprietary, the subgroups designing indi-
vidual modules rely on the command and control apparatus of the company
to ensure that this is the case. In contrast, when a mobile platform is open,
there is no single actor exercising control over all of the modules. Instead,
the activities of the different modules are coordinated by the information
structure of the architecture rather than a firm. Modules must restrict them-
selves to sending only the information that the other modules expect if the
architecture is to function properly. All actors participating in an open plat-
form depend on the presence of some governance mechanism for ensur-
ing that all of the components created by the various third-party providers
comply with the architecture.27 Thus, exclusion of a noncompliant app from
the system should not automatically be regarded as a sign of anticompetitive
or improper behavior. On the contrary, it may be a necessary part of any open
architecture.

2.	 Fragmentation

The flexibility inherent in open source software can give rise to a problem
more severe than noncompliant modules. Sometimes participants in open
source projects go beyond tinkering with the design of individual modules
and take the architecture in a fundamentally new direction. In extreme cases,
the divergence can create a fork in the open source project that causes the
project to divide into two different and noninteroperable branches, each
pursuing its own path.

Some forms of fragmentation or differentiation are not without redeem-
ing qualities. For example, forking may represent a diversity of interests, typi-
fied by the fact that even-numbered Linux are experimental releases filled
with new features that have not been fully debugged, while odd-numbered
Linux releases constitute stable resales that have been thoroughly tested.
The former is designed to appeal to sophisticated developers interested in
conducting research on the cutting edge, while the latter is intended to meet
the needs of commercial and less sophisticated users who are more inter-
ested in reliability and ease of use. Moreover, forking can allow third parties
to reinvigorate open source projects that are stuck in inefficient designs.
More importantly, the flexibility integral to the open source movement in
effect gives users the fundamental ability to fragment or fork.

	 27	 This article focuses primarily on the governance mechanisms for basic services (such as the desk
clock, browser, and calendar) associated with the Android Anti-Fragmentation Agreement (AFA),
discussed at greater length below. The GPS functions at issue in the Skyhook case are higher-level functions
that are governed by another device known as the Mobile Applications Distribution Agreement (MADA).
Despite this difference, the Skyhook case still illustrates the incentives to create noncompliant modules
and the need to create some governance mechanisms to protect the developer and user communities
against any components that deviate from the architecture.

630	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

At the same time, fragmentation can greatly impede the likely success of
an open source project. Fragmentation can force app developers to develop
different version for each noncompliant module, a process called porting.
Dividing an open source project into separate forks forces what was once
a single community working on one project to divide its energy and dupli-
cate efforts across two separate projects. In addition, the community devel-
oping apps for the operating system must now spend the time and effort to
make sure that their products are compatible with both branches of the fork.
Developers would ideally prefer to operate in an environment in which they
can “write once, run anywhere.” Excessive fragmentation and noninteropera-
bility would frustrate their ability to do so.

The tension represents what Martin Libicki has called the “fundamental
contradiction” between open source and modularity:

The more open the system, the more it can be modified by vendors and
users to their own ends, which is good. The more a system is modified,
however, the more likely that the modifications will be nonstandard. With
many nonstandard versions of UNIX available, software vendors need to
disperse (perhaps dissipate) their software efforts among many systems,
leading to fewer pieces of software available to any one system. . . . This
result reduces choice, which is bad.28

3.	 Mechanisms for Resolving These Tensions: Testing and Governance

How do open source projects manage the inherent tension between open
source and modularity? Whereas open source implies flexibility and freedom,
modularity requires a highly structured and restrictive environment to ensure
conformity with the architecture and to provide a sufficiently stable plat-
form for the developer community. What keeps open source projects from
fragmenting in an inefficient manner?

As an initial matter, some open source communities rely on a series of
informal governance mechanisms to maintain their projects’ coherence. For
example, open source communities have typically produced a fairly strong
norm against forking. In the words of Eric Raymond, “There is strong social
pressure against forking projects. It does not happen except under plea of
dire necessity, with much public self-justification, and with a renaming.”29
Furthermore, the incentives confronting a person considering whether to
create a fork can be quite daunting. All participants in the new fork would be
part of a smaller community, which would mean fewer collective benefits and
a greater obligation to do work. The magnitude of these liabilities increases

	 28	 Martin C. Libicki, Information Technology Standards: Quest for the Common Byte 47
(Digital Press 1995).
	 29	 Feller & Fitzgerald, supra note 1, at 96.

2016] 	 Software Frag mentat ion 	 631

when the existing open source project that is being forked is large. Moreover,
if the new fork does not attract sufficient followers, it will fail.

Though important, these informal mechanisms are too weak to ensure
coherent management of an open source project. With respect to noncom-
pliant modules, modularity theorists regard the existence of a system for
testing and verifying the performance of other components as an essential
part of any modular system. Harvard Business School professors Carliss
Baldwin and Kim Clark note that “the testable, verifiable dimensions of the
module are the foundation that supports arm’s length-contracts and market
transactions” and that “without tests, there is no way to know what is being
bought or sold.”30

To prevent excessive fragmentation, most open source projects rely on
some form of strong formal governance. This comes as a surprise to many
observers. The mythology holds that open source projects consist of widely
dispersed communities organized from the bottom up, within which all
members make their own small contributions to the overall project, excel-
lence is determined by peer review and who works the hardest, and the
community adopts the pragmatic and meritocratic position of “letting the
code decide.”

In practice, open source projects operate in a much more concentrated
and hierarchical manner. In fact, studies have indicated that 85 percent to
90 percent of contributed code is discarded.31 Another study indicated that
ten developers (less than 0.1 percent of the overall universe of developers)
contribute almost 20 percent of the code base for each project.32

Decisions about which contributions are accepted are made in a similarly
hierarchical manner. For example, the oft-cited article by Harvard Business
School professor Josh Lerner and Nobel laureate Jean Tirole noted that open
source projects are characterized by “a strong centralization of authority.”33
Another early commentator noted, “Open source may sound democratic,
but it isn’t. Leaders of the best-known Open Source development efforts
often explicitly stated that they function as dictators.”34

In fact, the term dictator has been used to describe the leadership of a
wide variety of open source projects, such as Linux and Python (although in

	 30	 Baldwin & Clark, supra note 14, at 380.
	 31	 Marshall Kirk McKusick, Twenty Years of Berkeley Unix: From AT&T-Owned to Freely Redistributable,
in Open Sources, supra note 4, at 31; Audris Mockus, Roy T. Fielding & James Herbsleb, A Case Study
of Open Source Software Development: The Apache Server, in Proceedings of the 22nd International
Conference on Software Engineering 263 (2000).
	 32	 Rishab Aiyer Ghosh & Vipul Ved Prakash, The Orbiten Free Software Survey, First Monday (July 3,
2000), http://www.firstmonday.org/ojs/index.php/fm/article/view/769/678.
	 33	 Josh Lerner & Jean Tirole, Some Simple Economics of Open Source, 50 J. Indus. Econ. 197, 221 (2002).
	 34	 Nikolai Bezroukov, Open Source Software Development as a Special Type of Academic Research (Critique of
Vulgar Raymondism), First Monday (Oct. 4, 1999), http://firstmonday.org/article/view/696/606.

632	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

Linux, Torvalds has delegated a great deal of authority to two lieutenants).35
Perl has developed a rotating dictatorship, in which authority is passed among
a small inner circle of Perl developers,36 with Perl creator Larry Wall serving
as the final arbiter.37 Even the Apache server project, which has been called
“as close to a democracy as one is likely to find in software development,” is
controlled by two dozen developers, all of whom wield veto power.38 Many
other open source projects are governed by a foundation.

Linux creator Linus Torvalds explicitly acknowledges that the control
provided by Linux’s hierarchical governance structure allows him to take
bolder action: “the fact that there is one person who everybody agrees is in
charge (me) allows me to do more radical decisions than most other projects
can allow.”39 Conversely, Unix collapsed in large part because no user group or
actor had the authority to make decisions for the platform.

The presence of such governance hierarchies is fundamentally at odds
with the collectivist mantle in which the open source movement tends to
wrap itself. Eric Raymond famously analogized the differences between
proprietary and open source software to the differences between a cathedral
and a bazaar. Like proprietary software, cathedrals are top-down projects
“carefully crafted by individual wizards or small bands of mages working in
splendid isolation, with no beta to be released before its time.”40 Open source
communities, in contrast, are more like bazaars: great babbling marketplaces
“of differing agendas and approaches,” bustling about in apparent confusion.41

As the presence of strong hierarchies reveals, the truth lies somewhere
in between. The presence of strong formal governance reveals that the
so-called bazaar has many cathedral-like qualities and that the sharp distinc-
tion between cathedrals and bazaars may represent a false dichotomy.42 Even
the most free-wheeling environments must have some rules and means for
settling disputes, particularly if they must conform to a strict set of architec-
tural rules in order to preserve interoperability. Moreover, the type of open
source license can affect the strength of the governance mechanism. The viral
copyleft provisions of the GPL ensure that any noninteroperable customiza-
tions will be available to the developer and user community. Consequently,

	 35	 DiBona, Ockman & Stone, supra note 4, at 12 (calling Linux a “benign dictatorship”); Guido van
Rossum, Origin of BDFL, Artima Weblogs: All Things Pythonic (July 31, 2008), http:// www.artima.
com/weblogs/viewpost.jsp?thread=235725 (referring to the founder of Python as “benevolent dictator for
life”).
	 36	 Weber, supra note 1, at 92.
	 37	 Feller & Fitzgerald, supra note 1, at 91.
	 38	 Malcolm Maclachlan, Panelist Describe Open Source Dictatorships, TechWeb (Aug. 12, 1999), http://web.
archive.org/web/20060313204003/http://www.techweb.com/wire/story/TWB19990812S0003.
	 39	 Hiroo Yamagata, The Pragmatist of Free Software: Linus Torvalds Interview (Sept. 30, 1997), http://
www.tlug.jp/docs/linus.html.
	 40	 Reynolds, supra note 5, at 29.
	 41	 Id. at 30.
	 42	 Feller & Fitzgerald, supra note 1, at 159–60.

2016] 	 Software Frag mentat ion 	 633

open source projects that rely on the GPL have less need for governance
mechanisms to protect against fragmentation. BSD/Apache-type licenses
permit software developers to assert proprietary control over their modifi-
cations. As a result, open source projects relying on the latter type of license
typically employ stronger forms of governance to ensure that the ecosystem
remains interoperable.

The nature of leadership also takes on a different character in the context
of open source. Success of an open source project depends on inspiring a
community of people willing to work on it. In a real sense, an open source
leader’s authority depends on the existence of followers. In a world where
all contributions are voluntary and the community is always free to exit by
forking the project, leaders’ ability to retain their positions depends largely
on their responsiveness to the needs of those led. These needs include provid-
ing fast feedback, serving as an effective moderator of technical disputes and
personality conflicts, and setting realistic interim and long-term goals.

To say that open source projects require a type of leadership that is some-
what different from the leadership that characterizes commercial companies
that produce proprietary software is not to say that they need no leadership
at all. On the contrary, ensuring that an open source platform does not frag-
ment depends on the presence of an actor with sufficient authority to resolve
disputes and to steer the platform in a beneficial direction.

III. Lessons from the Past:
Unix, Linux, and Symbian

The concepts of open source software and modular platforms represent
something of a paradox. They are inextricably bound together, while at the
same time resting in uneasy tension with one another. Although open source
holds out the promise of unbridled freedom, to the extent that the software
needs to interoperate with other components on a standardized basis, it is
not completely free.

Fortunately, two classic solutions exist to this problem. First, the fact
that some components will be provided by third parties requires the exis-
tence of some means to test components for compliance with the architec-
ture. Second, the possibility of forking requires some form of governance to
help prevent the platform from fragmenting.

A review of the histories of three well-known open source operating
systems—Unix, Symbian, and Linux—provides an eloquent illustration of
these dynamics. The case study of Linux serves as an example of how these
dynamics can benefit end users. Although Unix and Symbian have enjoyed
some degree of success, their ultimate fate consigns them more to the role of
cautionary tales.

634	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

A.	 Unix

Unix exemplifies both the upsides and downsides of open source software.
On the one hand, it represents one of the first successful open source proj-
ects. Indeed, some commentators have called it “perhaps the greatest soft-
ware innovation of all time.”43 On the other hand, it eventually became so
badly fragmented that it has become the classic example that everyone uses
to illustrate what not to allow to happen to an open source project.

Unix was originally written by Ken Thompson of AT&T Bell Laboratories
in a single month to enable him to play a computer game called Space Travel
on a then-outdated PDP-7 computer. It was designed to be a simple operat-
ing system that presented the same interface and functionality across a wide
range of different types of machines.

At the time Unix was created, AT&T was operating under a 1956 anti-
trust consent decree that prohibited the company from entering into the
computer business and required AT&T to license its patents. As a result,
AT&T initially did not try to commercialize Unix and instead licensed it to
universities royalty free. The University of California at Berkeley showed
particularly strong interest in Unix, particularly after Thompson spent a
semester teaching there in 1975. Berkeley programmers began improving the
operating system in the late 1970s and began releasing a package of tools and
utilities called the Berkeley Software Distribution (BSD), subject to an open
source license requiring clear notice of any modifications and appropriate
credit to the creators of the original code.

During the late 1970s and 1980s, the collaboration between AT&T and
Berkeley became wildly successful, as users ported it to a wide variety of differ-
ent machines and it became a key platform for the TCP/IP suite of proto-
cols. Over time, however, AT&T began imposing greater restrictions on the
distribution of the Unix source code. In 1982, the settlement of the antitrust
case that broke up AT&T led to the spinoff of Bell Labs and AT&T’s equip-
ment manufacturing subsidiary, Western Electric, into a separate company
that would eventually become known as Lucent Technologies. The revisions
to the consent decree lifted the restrictions that prevented Bell Labs from
commercializing Unix.

The prospect that Unix might become proprietary led the Berkeley
group to recruit a large group of volunteers to expand BSD into a complete
version of Unix that was independent of any code created by AT&T. Other
companies began creating their own versions of Unix, some based on BSD
(such as Apollo, DEC, Integration Solutions, and NSC), others based on
AT&T’s version (such as Altos, Apollo, Compaq, HP, IBM, Intel, Microsoft,

	 43	 Libicki, supra note 28, at 47.

2016] 	 Software Frag mentat ion 	 635

and Silicon Graphics), and still other entirely new instances based on neither
version (such as Cray, DEC, Data General, Motorola, and Unisys). In 1987,
AT&T attempted to end the fragmentation by entering into a strategic alli-
ance with Sun Microsystems. In 1988, Apollo, DEC, HP, IBM, Bull, Nixdorf,
and Siemens responded by creating the Open Software Foundation with the
stated (but ultimately unsuccessful) goal of creating a Unix version that did
not depend on AT&T licenses. AT&T and Sun created a rival organization
known as Unix International to promote the AT&T version.

By 1990, fragmentation had left the proprietary side of the Unix market
in a state of crisis. During the mid-1990s, differences of opinion regarding
the technical direction of the platform and sharp personality clashes caused
the academic side of the Unix market to fragment as well (with FreeBSD,
OpenBSD, and NetBSD emerging as separate forks). The protracted legal
battle that waged between AT&T and the Berkeley group from 1991 to 1994
over Berkeley’s use of the original Unix code added additional uncertainty to
the future of Unix.

The result was the coexistence of multiple incompatible versions of Unix,
in direct contravention of the hope that Unix would provide a uniform plat-
form that would not require app developers to port their software to each
individual machine. Larry McVoy of Sun Microsystems warned in late 1993
that “Unix is dying,” has “become stagnant,” and has “ceased to be the plat-
form of choice for the development and deployment of innovative technol-
ogy,” but his attempts to reunify the environment fell on deaf ears.44 Shortly
thereafter, Unix was overtaken by Microsoft on the proprietary side and by
Linux on the open source side.

The problems that led to Unix’s demise are summed up nicely by a
1985 Computerworld article that asked, “What’s Wrong with UNIX?” and
concluded that there were too many versions, each with its own unique
tweaks. In short, the flexibility that is on the one hand the greatest virtue of
open source at the same time became Unix’s greatest vice. In the words of
one user, “Unix is larger and more flexible than it has to be. Systems with less
flexibility can often provide better solutions .”45

The collapse of Unix represents a classic example of fragmentation.
The existence of multiple versions of Unix forced the software community
dedicated to debugging and improving the operating system to disperse its
energy across multiple duplicative efforts. Unix was also dogged by the lack
of a standardized and friendly user interface. The lack of a unified platform
prevented app developers from leveraging compatibility and forced them to

	 44	 Weber, supra note 1, at 98.
	 45	 Paul Korzeniowski, Users Laud UNIX Portability, Call Flexibility a Weakness, 19 Computerworld 11
(1985).

636	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

spend the resources needed to create specialized versions for each environ-
ment.46 The Unix universe also lacked a strong leader with the authority to
resolve disputes and put the platform back on the right track. The lack of
any mechanism or authority for offering some guidance over Unix’s evolution
prevented the community from creating a solution even after these problems
had been recognized.

Unfortunately, these problems emerged at a critical time in the computer
industry. The creation of Windows NT in 1993, which was the first version
of Windows that was completely free from MS-DOS, led to its widespread
adoption in the PC world. IBM, Hewlett Packard, Sun Microsystems, Santa
Cruz Operation, Univel, and UNIX System Laboratories made a last-ditch
effort to unify the platform, but failed. Novell tried to forestall the inevi-
table by making Unix completely open, but to no avail. At the same time,
the developer community left for Linux. The Open Software Foundation
attempted to stem the tide, merging first with Unix International and then
with a consortium of European Unix system operators known as X/Open
to form the Open Group. The Open Group eventually joined with IEEE to
certify a unified Unix specification in 2001. By this time, however, Windows
and Linux had displaced Unix as the operating system of choice. The near
total absence of new adoptions means that Unix’s future is quite bleak.

B.	 Symbian

The second cautionary tale is Symbian. Called “Android before Android,”47
Symbian dominated the early market for mobile operating systems, peaking
at a market share of 67 percent in 2006, and was the favored platform for
Nokia, Samsung, Motorola, and Ericsson. It continued to lead the market
until 2010, when Android finally passed Symbian in terms of new shipments.
Its market position was once characterized as “total dominance,” but by 2013
was recognized as “sliding into obscurity.”

Symbian began in 1998 as a joint venture between Psion Software (the
creator of the predecessor operating system EPOC) and three phone manu-
facturers—Ericsson, Motorola, and Nokia. From the beginning, Symbian was
badly fragmented. The sheer variety of physical form factors and screen sizes
meant that distinct versions of the operating systems had to be customized
for each individual device.48 Moreover, although Symbian phones shared

	 46	 Weber, supra note 1, at 98.
	 47	 Jo Best, “Android Before Android”: The Long, Strange History of Symbian and Why It Matters for Nokia’s
Future, ZDNet (Apr. 4, 2013, 9:40 AM), http://www.zdnet.com/article/android-before-android-the-long-
strange-history-of-symbian-and-why-it-matters-for-nokias-future/.
	 48	 For an excellent overview of how device diversity leads to fragmentation, see Damith C. Rajapakse,
Techniques for De-fragmenting Mobile Applications: A Taxonomy, in Proceedings: The 20th International
Conference on Software Engineering & Knowledge Engineering 923 (2008).

2016] 	 Software Frag mentat ion 	 637

the same shell operating system, different groups of phone manufacturers
created their own mutually incompatible user interfaces. As a result, the
Symbian market was dominated by three distinct software platforms—S60,
UIQ, and MOAP—with different companies viewing their version as a key
differentiator. The result was that apps written for one platform would not
run on the other platforms. This noninteroperability not only frustrated end
users and increased app developers’ costs, but also meant that no unified app
store could ever develop for Symbian.

The emergence of competition from the iPhone in 2007 signaled the
beginning of Symbian’s demise. In 2008, Nokia bought out its co-venturers’
interests in Symbian and created the Symbian Foundation in an unsuccessful
attempt to turn Symbian into a royalty-free open source platform. Symbian’s
origins as a proprietary operating system made it difficult to attract the type
of robust user and developer community upon which open source projects
depend. In addition, the Symbian Foundation did not release the operating
system’s source code for another two years. The Symbian Foundation folded
shortly thereafter, and Nokia abandoned Symbian in February 2011 for
Windows Phone. On June 22, 2011, Nokia outsourced further development
of the Symbian operating system to Accenture through 2016 and terminated
support for Symbian on January 1, 2014.

Symbian’s history offers a number of warning signs for future efforts.
First, although support for a wide variety of form factors and screen sizes
greatly enhances competition and consumer choice, it also presents signifi-
cant challenges in terms of fragmentation. Second, left to their own devices,
the various Symbian device manufacturers each attempted to use aspects
of the operating system and user interface as key differentiators instead of
investing in compatibility and the viability of the platform as a whole. The
emergence of multiple user interfaces, each with its own mutually incompat-
ible APIs, required app providers to undertake the effort to port each app for
each manufacturer’s device, which fragmented the Symbian ecosystem still
further.

C.	 Linux

In 1991, Helsinki University student Linus Torvalds released the kernel of
a Unix-like operating system that he had developed based on a Unix clone
called Minix. His efforts dovetailed perfectly with the effort initiated by
former MIT researcher Richard Stallman in 1984 to create a completely open
source operating system, which he called GNU (for “GNU’s not Unix”). By
1991, Stallman finished the most of the operating system, but was unable to
finish the kernel until 1996. Torvalds stepped into the breach by combining
the two. In the process, he invited others to join him in improving the kernel

638	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

and to help him reconfigure utilities created for Minix for the new operating
system. Torvalds released the first official version of Linux in 1994.

Linux proved to be a tremendous success. It filled the void left by the
collapse of BSD, as former Unix vendors began to shift their emphasis to
Linux. That said, Linux has been faced with persistent concerns about
forking, often phrased in terms of whether Linux would fall into the same
trap as Unix. As of August 2014, hundreds of different Linux distributions
existed, and many of them contained different (and incompatible) program
“libraries” used in running applications. Calls for reducing the number of
Linux distributions were met with criticism from those arguing that the
right to experiment with software freely was the essence of the open source
movement. The fragmentation of Linux has been mitigated by the rise of
for-profit companies such as RedHat and VA Linux, which help users manage
the distributions.

Commentators have been struck by the limited extent to which Linux
has fragmented.49 The primary reason is that, in stark contrast to Unix,
Linux had a natural leader: Linus Torvalds. As Linux’s founder, Torvalds was
the natural person to exercise authority over the system. He bolstered his
authority by adopting a self-deprecating manner, by going to great lengths to
document and justify his decisions, and by being willing to admit when he is
wrong.

When necessary, Torvalds has not been afraid to take action. For example,
in 1992, when complaints arose that Fred van Kempen’s efforts to incorpo-
rate TCP/IP into Linux were taking too long (mostly because of his deter-
mination to make it work with all networking protocols and not just TCP/
IP), Torvalds sanctioned a parallel coding effort by Alan Cox and ultimately
declared Cox’s TCP/IP-only solution the winner by admitting it into the
core Linux distribution. The episode effectively anointed Cox as Torvalds’s
de facto lieutenant for networking. Although van Kempen could have forked
the code by continuing to work on his version, the developer community
remained loyal to Torvalds.

A second threat arose in 1998, when the operator of a mirror site
complained that Torvalds was taking too long to accept patches to the code.
Torvalds obviated the threat by agreeing to a pyramid structure, which depu-
tized key lieutenants to take the lead in reviewing submissions, while retain-
ing Torvalds as the final authority to resolving disputes. A similar dispute in
2002 led to the creation of additional layer of organizational decision-mak-
ing. Torvalds’s status as Linux’s creator, the goodwill he earned for his dedica-
tion and good judgment in managing the community, and the deft touch he

	 49	 See, e.g., Weber, supra note 1, at 158–59; DiBona, Ockman & Stone, supra note 4, at 12.

2016] 	 Software Frag mentat ion 	 639

exercised in handling the interpersonal dynamics gave him the authority to
prevent major forks from emerging.

Thus, although Linux has achieved some success, it does not represent
the world of total freedom, bottom-up spontaneous ordering, and technical
meritocracy that the collectivist rhetoric surrounding open source might lead
people to believe. The history of Linux reveals that prevention of the frag-
mentation that can have such a devastating negative impact on open source
projects was the result of an elaborate system of governance. The result is a
process that is quite formal and hierarchical, notwithstanding the fact that
participation in any open source project is completely voluntary.

IV. Implications for Modern
Smartphone Operating Systems

Taken together, the histories of Unix, Linux, and Symbian provide a number
of insights into the dynamics surrounding open source operating systems.
As an initial matter, the desire to support multiple physical devices increases
porting costs and causes a significant risk of fragmentation. In addition, the
participation of multiple device manufacturers, each pursuing its own inter-
ests, creates additional pressures towards fragmentation. The case studies
also illustrate the point made above that the best way to prevent fragmen-
tation is through strong governance. Linux was able to resist these pressures
because of the leadership of Linus Torvalds. For Unix and Symbian, the
absence of clear leadership led to a more difficult environment for both end
users and app developers in terms of systems integration and maintaining a
consistent end user experience.

Acknowledging the propriety of some form of governance leaves open
the question of how much governance is appropriate. The spirit of open
source requires that any governance regime leave substantial room for exper-
imentation. In addition, the voluntary nature of open source projects and the
example set by Linus Torvalds both counsel in favor of asserting as light a
touch as possible. The real question is not whether some actor should have
been allowed to exercise some degree of guidance over the platform, but
rather how much and what type of governance should be considered a reason-
able step to ensure that the mobile operating system achieves its potential.

A.	 The Role of Hardware Diversity

The Symbian experience teaches us that hardware diversity is an import-
ant source of fragmentation. Although a broad selection of phones creates
real benefits to end users and can enhance competition, hardware varia-
tions create significant differences in operating context in terms of screen

640	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

parameters (size, color depth, orientation, aspect ratio, and so on), memory
size, processing power, input devices (keyboard, touch screen, and so on),
cameras, and connectivity options (WiFi, Bluetooth, Infrared, Global Packet
Radio Service), just to name a few.50

B.	 The Need for Testing and Governance

Apart from the differences in hardware platforms, third-party provisioning
and the divergence of incentives require that end users have some means for
verifying that components comply with the design. As noted above, some
means for testing devices is necessary to have functioning markets for third-
party provision and for end users to know that they are getting what is prom-
ised. In most cases, the incentive structure and social norms surrounding
open source projects discourage module creators from deviating from the
architecture or creating incompatible forks. That said, the desire to reduce
costs by omitting certain APIs or other features suggests the existence of
circumstances that can lead participants in the platform to deviate from the
architecture. The possibility exists that the cost of generality and the incen-
tives to make noncompliant devices may become sufficiently strong that
device manufacturers cannot be expected to abide by the honor system. This
danger makes some system for verification essential. Requiring end users to
conduct such tests would be burdensome and unnecessarily duplicative. The
result is that some degree of provider-based testing appears inevitable.

Within provider-based testing, a range of alternative approaches to
testing and governance exist, each one varying in terms of restrictiveness.
The most restrictive approach is for the platform sponsor to manufacture all
of its own smartphones. Although this approach gives the platform complete
authority to ensure compatibility, it imposes limits on the variety of hard-
ware devices and on competitive entry. A second, less restrictive approach
would permit third parties to produce devices, but would require that manu-
facturers submit their devices to the platform sponsor for certification and
testing. Although more permissive than the first option, this approach risks
giving the platform sponsor gatekeeper control over all devices. A third, even
less restrictive approach would provide a compatibility standard along with
open testing tools for device manufacturers to self-certify that their devices
comply with that standard. This approach provides device manufacturers the
most flexibility and offers the greatest benefits in terms of variety of devices
and ease of competitive entry. Finally, a platform sponsor may adopt a hybrid
approach that gives module creators a choice between options two and three.

In addition to testing regimes to ensure compatibility, open source proj-
ects must rely on some form of governance to prevent fragmentation and

	 50	 Rajapakse, supra note 48.

2016] 	 Software Frag mentat ion 	 641

forking. A nonexclusive requirement to maintain compatibility would seem
to be the least restrictive approach.

The Android platform that is the current subject of antitrust scrutiny
generally falls within the last and least restrictive of these options. The
following, more detailed review of Android’s licensing practices reveals that
within this regime, device manufacturers can choose from among a range of
possible licensing alternatives.

1.	 The Android Open Source Project (AOSP) License Agreement

The least restrictive option is to license the Android Open Source Project
(AOSP) source code without making any commitments as to the modifica-
tion or implementation of the code. The software is royalty free under an
Apache open source license, although some hardware is subject to patent
licenses. The Apache licenses ensure that device manufacturers remain free
to modify the source code as they see fit. They also remain free to produce
other devices using other operating systems if they so choose.

The most prominent provider to go this route is Amazon, which has
created its own operating system known as Fire OS, which is based on AOSP
and runs the Amazon’s Kindle and Fire Phone. Other prominent examples
include Nokia’s X platform and the open source CyanogenMod operating
systems, among others. Samsung is attempting to avoid Android altogether
by basing its new Tizen operating system on the original Linux kernel.

The Android license agreement for AOSP places device manufacturers
under no obligations to carry any Android apps and leaves them free to add
whatever apps they choose. Because there are no restrictions on the level
of customization, the resulting devices may not be compatible with apps
written for other Android devices.

2.	 The Compatibility Definition Document (CDD) and the Compatibility Test
Suite (CTS)

The second level of compatibility is for a device manufacturer to guarantee
interoperability by ensuring that its device satisfies a published compatibility
standard. The compatibility standard for each version of Android is embod-
ied in a Compatibility Definition Document (CDD). Google also provides
a free Compatibility Test Suite (CTS) that device manufacturers may use to
determine whether their device is compatible. The goals of the CDD are to:
(1) provide a consistent application and hardware environment to applica-
tion developers, (2) enable a consistent application experience for end users,

642	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

(3) enable device manufacturers to differentiate while being compatible, and
(4) minimize costs and overhead costs of compatibility.51

Devices that comply with the CDD must include nine core applications:
Desk Clock, Browser, Calendar, Contacts, Gallery, GlobalSearch, Launcher,
Music, and Settings. These applications tend to provide basic functions on
which other applications draw, so their presence provides a consistent set of
resources on which the app developer community can draw. Device manu-
facturers can satisfy this requirement either by using the versions of these
apps provided by Google or by providing their own apps so long as they
satisfy the interoperability requirements. The CDD also requires that the
device include a complete set of Android APIs and Android developer tools
to ensure that the device will operate properly. Device manufacturers remain
free to develop and distribute their own APIs in addition to those required
by the CDD.

The goal is to create a baseline of interoperability that helps app develop-
ers by creating a stable set of resources and by eliminating the porting costs
and multiple versions for different builds, while at the same time preserving
a degree of flexibility. Devices that demonstrate compliance with the CDD
by passing the CTS are regarded as Android compliant. Importantly, device
manufacturers may choose to comply with the CDD without signing any
agreements.

It bears noting that mandatory apps do not include any Google propri-
etary apps or apps alleged to be give rise to market power by competition
regulators. CDD compliant devices are under no obligation to install any of
these services and remain free to include apps that compete directly with
these services. Device manufacturers may also use whichever search service
they would like.

3.	 The Anti-Fragmentation Agreement

Device manufacturers that would like greater certification of compatibility
can sign the Anti-Fragmentation Agreement (AFA), which was first created
in early 2008, when Android was nascent and one year prior to the launch
of the first Android smartphone. The AFA requires signatories to promise
(1) that all Android devices it makes will fulfill the CDD requirements, and
(2) not to take any actions that may cause the fragmentation of Android.

As noted above, the first provision, requiring that all Android devices
made by the signatory fulfill the CDD requirements, only requires the instal-
lation of basic services, such as Desk Clock, Browser, Calendar, Contacts,
and Settings. It does not prevent device manufacturers from substituting
their own versions of the required apps so long as they pass the compatibility

	 51	 Compatibility Program Overview, Android, https://source.android.com/compatibility/​overview​.​html.

2016] 	 Software Frag mentat ion 	 643

test. The CDD also does not place any restrictions on the device manufac-
turer’s ability to market non-Android devices (that is, devices based on other
operating systems, such as Windows Phone, Blackberry, or Linux).

The second provision, prohibiting device manufacturers from taking
any actions that would fragment Android, is effectively a reiteration of the
first provision in that it prohibits manufacturers from creating Android
phones that do not comply with the CDD. The rationale is that permitting
device manufacturers to sell both CDD-compliant and CDD-noncompliant
Android phones can increase app developers’ costs by requiring them to port
their apps to multiple platforms, and can create potential confusion among
consumers over which phones are Android compliant and which ones are not.

Signatories that satisfy these requirements are eligible to declare their
devices to be “Android Compatible Devices.” The AFA requires pre-instal-
lation of only those basic apps included in the CDD (Desk Clock, Browser,
Calendar, Contacts, Gallery, GlobalSearch, Launcher, Music, and Settings).
As noted above, AFA signatories can use any version of these apps (Google’s,
their own, or a version provided by a third party) so long as they fulfill the
basic functions. AFA signatories can also benefit from additional technical
support in the form of information about upcoming Android features, new
APIs, Android security and performance, and new form factors, as well as
assistance to patch bugs, address CTS failures, and implement new features.

Together, these provisions represent a fairly unrestrictive form of gover-
nance that ensures a minimum level of compatibility and interoperability
across Android devices. Importantly, the compatibility requirements covered
by the AFA refer only to APIs and basic apps and do not contain any obliga-
tions with respect to Google Mobile Services (GMS) suite of apps, such as
Google Play, YouTube, Maps, and Gmail, that have been the primary source
of regulatory concern. In essence, the AFA enables signatory device manufac-
turers to join together in a partnership committed to promoting a particular
version of the Android open source project by creating mutually compatible
devices and limited sharing information.

C.	 Safety Valves

The terms of the AFA contain a number of features that make it much less
likely that its terms can properly be regarded as problematic. As an initial
matter, the basic licensing agreement for AOSP, the apps that the CDD
requires to be installed, the CTS tool for evaluating compliance, and the AFA
are all royalty free.

In addition, the AFA is nonmandatory: many device manufacturers
(especially in China) opt to comply with the CDD without signing the
AFA. Moreover, both the CDD and the AFA are nonexclusive in that device

644	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

manufacturers can market any non-Android devices (for example, Samsung
and ZTE) and can substitute their own apps or otherwise customize the
hardware and software so long as they comply with the CDD (for example,
Xiaomi, Huawei, ZTE, and HTC).

Finally, the presence of meaningful market options makes it unlikely that
either the CDD or the AFA will harm competition. Because Android’s is
based on open source, any device manufacturer that is unwilling to comply
with the CDD or sign the AFA remains free to produce its own version of
Android.

Interestingly, both Apple and Microsoft are invoking Android’s greater
supposed vulnerability to fragmentation as a potential reason to buy iOS or
Windows Phone instead of Android. This suggests that fragmentation is a
product feature on which various operating system providers are competing.
Limiting any of these companies’ ability to manage fragmentation would
place artificial limits on product features and would reduce one dimension
of competition.

Indeed, focusing undue regulatory attention on open systems may have
unfortunate unintended consequences. If antitrust scrutiny restricts provid-
ers of open platforms from using less restrictive governance mechanisms
to protect against fragmentation and noninteroperability, those providers
may well be left with no choice but to adopt more restrictive alternatives.
Specifically, adopting too restrictive a stance on the use of agreements like
the AFA to limit fragmentation may force mobile operating systems seeking
to avoid fragmentation either to adopt Apple-style vertical integration or
to require that all device manufacturers submit their phones for testing.
This would effectively bar mobile operating system providers from employ-
ing the least restrictive of these three alternatives. If so, this would reduce
the diversity and competitiveness of mobile operating systems and would
substantially increase the barriers to entry for OEMs, developers, and other
platform participants.

In short, all of the approaches have advantages and disadvantages that
appeal to different types of consumers. In addition, providers face a consid-
erable amount of uncertainty over the best way to strike the proper balance
the benefits to innovation associated with flexibility and concerns about
fragmentation. This underscores the error in regarding the selection of the
ideal governance regime as an either-or choice. On the contrary, end users
benefit the most by being able to choose among different options that are
exploring different approaches to preventing fragmentation.

2016] 	 Software Frag mentat ion 	 645

V. A Brief Comment on User
Interfaces and the MADA

Although this analysis focuses primarily on the relationship between open
source software and modularity theory and its implications for the AFA,
I thought I would offer a few words about the other principal governance
instrument for Android: the Mobile Applications Distribution Agreement
(MADA).52 MADAs typically require device manufacturers to preload all
of the apps contained in GMS, including Play, YouTube, Maps, and Gmail.
MADA also require that the Google Search widget and the Play icon be
accessible with at most one phone tap away from the home screen and that
Google Search be the default for in-app searches, although the MADA does
not require that Google Search be the default search engine for the web
browser. MADA signatories may also use the Android green robot trade-
mark. All apps are provided royalty free except for patent royalties imposed
by outside parties. Device manufacturers are free to preload their own
versions of these apps alongside the Google versions.

Unlike the AFA, the MADA is not designed to address the problems of
fragmentation. Instead, it is designed to address another major weakness of
open source systems: the difficulty in providing a consistent user interface.

Open source is often described as “hackers writing for hackers.”53 It is
known to function best in horizontal domains where there is widespread
agreement on the design architecture and the general shape of the software
requirements is well known and not problematic. It is less effective in vertical
domains where requirements are a function of domain specific knowledge
acquired over time. The sparse documentation and field support has long
made open source better suited for experts operating on the server side than
for end users.54

Because of these qualities, open source projects have faced particular
difficulty with end-user interfaces. The design of end-user interfaces is domi-
nated by tacit information that is hard to modularize. Moreover, the acquisi-
tion of this information is associated with focus groups and physical contact,
which contrasts starkly with the email chains that characterize open source
projects.55

As a result, it comes as no surprise that Unix, Symbian and Linux have
often been characterized as “esoteric and hard to use.”56 In particular, Unix
was criticized for its lack of a friendly interface easily implementable by a

	 52	 Although the terms of specific MADAs are confidential, two MADAs were made public as part of
the record in Oracle America, Inc. v. Google, Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012).
	 53	 Weber, supra note 1, at 237–38.
	 54	 Feller & Fitzgerald, supra note 1, at 175–76.
	 55	 Id. at 132, 175; Weber, supra note 1, at 237–38.
	 56	 Feller & Fitzgerald, supra note 1, at 22.

646	 The Criter ion Jour nal on Innovation 	 [Vol . 1 :619

nontechnical person.57 Symbian suffered from similar problems. As noted
earlier, different groups of manufacturers each made their own proprietary
enhancements to Symbian, which in turn created three distinct Symbian
software platforms (S60, UIQ, and MOAP), each with its own user inter-
face. The result was an end-user interface that was quite inconsistent and did
not provide app developers with a consistent platform for which to design
their products.58 Linux users must choose from dozens of end-user inter-
faces, although Linux is attempting to standardize around the K Desktop
Environment (KDE) and GNU Network Object Model Environment
(GNOME).59 These challenges have prevented Linux from achieving signifi-
cant penetration into the home desktop and laptop market.

Although the diversity of form factors, screen sizes, and user interfaces
among Android devices yields many benefits, the end-user experience also
varies widely from device to device. Android users must adapt to every new
device. In contrast, the consistency of the end-user interface is often regarded
as one of the primary advantages of the Apple iPhone.

The fragmentation of end-user interfaces poses difficulties for the devel-
oper community. The variations in code and format often force developers
to create versions for each environment in which they would like to operate,
increasing their costs and making it more difficult for them to enter new
markets.

The ideal solution would be to introduce some element that permits
greater consistency to the end-user experience without losing the bene-
fits of product diversity and entry by new firms associated with an open
source environment. The MADA represents one attempt to strike a balance
between these two competing considerations. Requiring signatories to use
specific Google-provided apps helps unify the end-user experience. The goal
is to provide end users with a consistent baseline of out-of-the-box function-
ality. At the same time, the GMS apps provide a more consistent platform for
the app community.

The need to remedy the lack of a consistent end-user experience that
has long plagued the open source operating system provides a strong justi-
fication for the type of restrictions contained in the MADA. The fact that
the apps required by the MADA are royalty free and nonexclusive reduces
the likelihood of any anticompetitive effects. Most importantly, preventing
open source projects from using agreements like the MADA to address this
key weakness would leave them incentives to assert more direct control over
end-user interfaces by adopting policies that place more restrictions on device

	 57	 Korzeniowski, supra note 45; McKusick, supra note 31, at 56.
	 58	 David Gilson, The History of Symbian’s Secret Fragmentation, All About Symbian (Mar. 12, 2012, 3:00
PM), http://www.allaboutsymbian.com/features/item/14405_The_History_of_Symbians_Secret.php.
	 59	 Feller & Fitzgerald, supra note 1, at 22; Weber, supra note 1, at 102–03, 238.

2016] 	 Software Frag mentat ion 	 647

manufacturers and app providers. Thus, overly vigorous antitrust oversight
imposed in the name of promoting competition and protecting consumers
runs the risk of actually reducing competition and consumer choice.

Conclusion

Open source operating systems thus present something of a conundrum. On
the one hand, open source requires that developers have absolute freedom
to modify the software as they see fit. On the other hand, the software must
obey certain architectural rules if it is to serve as a platform that can bring
together different types of hardware and applications. The flexibility inher-
ent in open source can lead to incompatibility. In extreme cases, it can even
cause the open source project to fork into two or more different branches.

Such fragmentation dissipates the economic benefits of being able to
access a large customer base through a single platform and forces app devel-
opers to expend the cost to make their products compatible with multiple
versions of the operating system. One classic solution to these problems is
to rely on some form of testing to ensure that the components provided by
third parties are configured to comply with a compatibility standard. Another
is to subject the overall system to some form of governance. Although both
alternatives may seem to be somewhat inconsistent with the philosophy
of open source, the academic literature indicates that both are a necessary
aspect of any modular platform in which multiple parties provide separate
components. The question is thus not whether such restrictions must exist,
but rather how restrictive they need to be.

The history of the three leading open source operating systems (Unix,
Symbian, and Linux) confirms this insight. Moreover, an approach that
permits third parties to self-certify represents the least restrictive way to
implement such requirements. Any restrictions are also less likely to be
problematic if they are royalty-free, nonexclusive, and open source. It thus
appears that solutions such as Google’s Anti-Fragmentation Agreement
represent one way to strike a reasonable balance between ensuring that the
operating system serves as a platform that brings together mobile devices and
applications in a way that promotes the ability to “write once, run anywhere,”
and giving device manufacturers and app developers as much flexibility
as possible. Given the lingering uncertainty about the best way to balance
these concerns, end users and technological progress would be best served by
giving operating system providers considerable latitude in determining the
best way to promote freedom without creating undue risks of fragmentation.

